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Analysis and prediction of product sales provide valuable 
information that businesses can use in gauging product 
demand and restocking of items. This project makes use of 
a dataset of transactions for a single small clothing retail 
store while incorporating weather data to analyze and 
predict customer foot traffic. Deep learning methods such as 
LSTMs may struggle for smaller datasets. Fortunately, 
statistical methods such as exponential smoothing and 
ARMA (Autoregressive Moving Average) models as well as 
machine learning algorithms like LightGBM may be viable 
for small to medium-sized datasets. In particular, extensive 
feature engineering such as the addition of holiday effects 
and lag features informed by a combination of exploratory 
data analysis and domain knowledge may compensate for 
the smaller amount of available data. 

Models were built using Holt-Winters, SARIMAX, 
LightGBM, and Prophet. Evaluating on 13 test folds of 28 
days each, the Prophet model performed the best with an 
average RMSE of 3.6152, while LightGBM and SARIMAX 
performed similarly to each other at 3.7016 and 3.7024 
respectively, followed by an ensemble average of two 
Holt-Winters models using different seasonal periods at an 
RMSE of 3.7633. Model performance seemed to largely 
depend on how well it can capture seasonal patterns. 
However, different models performed better in different 
folds, raising the possibility that certain models may excel 
over others under different contexts. Ensembling the four 
models by taking the average of their predictions stabilizes 
these forecasts and results in improved performance with 
an RMSE of 3.5843. These errors are too high for practical 
use, highlighting the limitations that arise from the high 
variability at a granular level, especially for smaller datasets. 
However, forecasting at broader intervals such as at a 
weekly level may still be viable for real-world application. 
 
 1 Introduction 

 
Retail sales forecasting is a common problem of interest 

for retailers, which can be utilized for predicting demand of 
certain products as well as for inventory management by 
taking into account potential future sales. While these 
benefits apply to large retailers like Walmart and Target for 
maximizing sales, small “mom and pop” stores with much 

lower employee counts can also see immense gains from 
such solutions, arguably to an even greater extent as the 
risks made from over or underestimating future sales can be 
proportionally more costly. However, there are additional 
challenges that arise in this setting: the quality and quantity 
of data. Many local businesses are unlikely to have vast 
amounts of clean and rich data, and any usable data would 
be a result of simple bookkeeping. On the other hand, 
working at a smaller scale can allow for easier 
understanding of the ins and outs of that particular store, 
which can aid in feature engineering that may compensate 
for the relative lack of data. 

For this project, I will utilize data containing a small 
individually-owned clothing retailer’s history of sales 
transactions to analyze and predict 28-day forecasts of daily 
sales for a particular product. In particular, I analyze 
correlations, trends, and seasonality in the data to aid in 
feature engineering as well as my choices for modeling. I 
then build models using four approaches: Holt-Winters, 
SARIMAX, LightGBM, and Prophet, as well as an ensemble 
of these models. Finally, I evaluate the results with 
expanding window cross-validation on a number of metrics. 

 
2 Related Works 

 
The Corporación Favorita Grocery Sales Forecasting 

Kaggle competition provides data from their grocery stores 
[1]. While the scale of the dataset is much larger and the 
genre of products is different (as opposed to my clothing 
dataset), we can get a general idea of which techniques 
may or may not work well. Ganguly et al. [2] found that a 
Linear Regression method fell short due to the grocery 
dataset’s complexity, and that machine learning algorithms 
like Random Forest, Gradient Boosting, Support Vector 
Regression, and XGBoost performing comparatively better, 
with Random Forest coming out on top out of these 
approaches. Other methods include deep learning methods 
such as LSTMs or CNNs. The winning model of the 
competition, however, seems to be based on LightGBM 
(Light Gradient-Boosting Machine). It seems that tree-based 
models seem to do well for this particular task. 

Walmart also provides a similar dataset in the M5 
Forecasting - Accuracy Kaggle competition [3], in which 
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ensembles of LightGBM models were extensively used 
among the top competitors. However, simpler models such 
as exponential smoothing (such as Holt-Winters) as well as 
ARIMA models were found to be viable especially at a store 
or product-store level [4]. 

 
3 Proposed Work 

 
My project involves the daily sales of a single style of 

work pants from a specific brand aggregated across 
different sizes and colors for a single store. The goal is to 
analyze and identify important factors and trends in the 
data, and forecast sales for up to 28 days into the future. 

The dataset was sourced from a local clothing retail store 
owned and operated by a relative of mine. While this seems 
like a simplification of the related works above, it differs in 
its context. First, the dataset is much smaller in scale and 
likely not as tidy as those from larger corporations. In 
addition, I have actually worked at this store a number of 
years ago so I have some domain knowledge that I can 
leverage for this project. While I am far from an expert in 
this field, I am fairly familiar with the dataset and what may 
be required for data cleaning, interpreting the results of 
analyses, as well as feature engineering. This is somewhat 
akin to a data analyst taking input from a domain specialist, 
and by taking both roles I might hope to gain some insight 
into what each may require from the other. 

In addition, I chose a specific product that could, in a 
sense, be considered representative of the data as a whole, 
similar to a cheeseburger at McDonald’s. This particular 
pants style is the most basic of its category, is relatively 
affordable, and is not as affected by seasonality compared 
to other items like shorts or jackets. It is also least likely to 
be affected by external factors, or rather, as a “staple” item if 
it is affected by external factors, other items are likely to be 
similarly affected (this isn’t completely true, as I’ll briefly 
touch up later). Therefore, analysis on this specific product 
can be a good baseline in judging the feasibility of future 
projects involving this store’s dataset, as well as be a 
starting point for extending to other problems such as 
analysis of seasonally-sensitive items or forecasting on a 
different level such as forecasting across different products 
or across different colors and/or sizes of the same product 
style. 

 
3.1 Dataset 

 
The dataset contains a time series of dates, times, 

invoice number (i.e. the ID number of a single transaction), 
description of a unique product, quantity of the item 
purchased, price, and sales status. The product description 

is a string that contains the product name, and if applicable, 
color and/or size. Sale status indicates whether the item 
was sold, discounted, returned (exchanged or refunded), or 
voided (cancelled, usually in cases of error on the cashier’s 
part), which is necessary for adjusting prices or completely 
removing certain rows. There are other irrelevant or 
unnecessary columns that I omitted. Each row involves a 
single item purchased in a specific transaction, meaning 
that a transaction with multiple items will be represented by 
multiple rows (with the same date, time, and invoice 
number). 

Data starts from January 2, 2018 and ends on June 1, 
2025. Data exists for prior years but the store moved 
location at some point resulting in a number of changes 
during its transition, so I chose to start from a year that 
better reflects the store in its current state. 

 
3.2 Data Preprocessing and Cleaning 

 
Before anything, I needed to process the data in the 

proper format for my problem, specifically the daily sales 
counts for the product. I also included the base price of the 
product (price goes up at certain size thresholds) which 
could be used to identify price increases. Basically,  I filtered 
for sales of this specific product based on product 
description, ignoring color and size, and summed the 
quantities sold for each day. 

While this seems straightforward, there were a number of 
issues I addressed. The few notable issues were: Single 
transactions of a large quantity of the item, non-standard 
sales statuses (voided, discounted, returns), and dates with 
no sales of the product. 

The first issue just involved removing outliers above a 
certain threshold as they would skew the data if left alone. 
These are often large purchases from local businesses or 
organizations and in reality would be handled differently 
from regular transactions. For the second issue, voided 
sales were simply removed, while discounted sales had 
prices reverted to their original retail price. Returns were 
handled more carefully. 

The third issue was a bit more complicated. There are 
three possibilities for days with no sales: it was a normal 
business day that just didn’t have any sales of this particular 
product, it was a holiday that the store was closed for (i.e. 
Christmas, New Year’s Day), or the store was closed due to 
unforeseen events (in particular, a lockdown during the 
Covid-19 pandemic). The first two cases are simple, as we 
simply create rows for the dates with zero counts. For the 
closed holidays, I added a column indicating whether or not 
the store was a regularly-scheduled closed day. 

As for the third case, it would be hard to catch single days 
where they suddenly needed to close (unless the store kept 
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it on record somewhere), although even then it may not be 
a big issue to ignore these instances. However, during the 
COVID-19 pandemic, California implemented a "stay at 
home" order, requiring non-essential services to close. This 
forced the store to close from March 20 to May 7, 2020, 
until May 8 when the lockdown was partially lifted for certain 
businesses including clothing stores. As a result, there are 7 
consecutive weeks of missing data, which will be a problem 
for time series models. While some algorithms like 
LightGBM do not necessarily require data for all dates, 
there will be issues when adding lag and rolling window 
features, which rely on values from past instances. As such, 
rather than assigning zero counts or completely ignoring 
these instances, it would be better to impute target values 
based on other values from the dataset. 

 

 
Fig. 1​ Plot quantities in 2019-2021 after imputing missing values 

(purple) during the 2020 lockdown. 
 
For the lockdown period, I imputed the median of the 

target values from 357, 364, and 371 days prior, multiplied 
by the ratio of the sum of values from 28 days (4 weeks) 
before and after the lockdown period to that of the 
corresponding days (364 days prior) from 2019, and 
rounded to the nearest integer. Essentially, for each of these 
dates I chose a value based on “similar” past dates (same 
day of week, roughly one year prior), and multiplied by a 
“yearly effect” value to try to take into account the change in 
trend from the prior to current year. 

 
3.3 Exploratory Data Analysis 

 
The data (Fig. 2)  shows a right-skewed distribution with a 

mean of roughly 5.91 slightly above the median of 5. A 
relatively high standard deviation of 4.39 compared to the 
mean suggests notable variability. Values range from 0 to 
36, although with a 75th percentile of 8. Certain models 
assume normality, so applying a transformation to the target 
may improve performance. 

 

 
Fig. 2​ KDE plot of target (blue), as well as of log, square-root, and 

Box-Cox transformations of the target. Skewness measures the asymmetry 
of the distribution, with values closer to 0 indicating more symmetry. 

 
In particular, the Box-Cox transformation results in a fairly 

normal distribution with a skewness value of -0.0156, 
indicating a slightly heavier left-tail likely due to the counts 
being lower-bounded on 0. Box-Cox, along with the log 
transformation, only takes positive values. Since the counts 
can be zero, we would add a constant to each target value 
(adding 1 is simplest, but may be another value that can be 
tuned), and revert the transformation and subtract the 
constant from resulting predictions. The statsmodels 
Holt-Winters method includes a parameter for applying the 
Box-Cox transformation, although it may need to be 
manually applied for other methods such as SARIMAX. 

 
3.3.1 Autocorrelation and Partial Autocorrelation 

 
Autocorrelation measures the correlation of a time series 

with a delayed version of itself. For instance, autocorrelation 
of a daily time series with 3 lags would be the correlation of 
each day’s value with the value from 3 days earlier 
respectively. Partial autocorrelation is similar but removes 
the influence of earlier lags, thus representing the direct 
effect of the lag. Continuing the previous example, the ACF 
at lag 3 would be influenced by correlations at lags 1 and 2, 
but PACF removes those effects and gives an isolated 
measure of the correlation between the current and 3-day 
lagged values. 

The ACF and PACF plots (Fig. 3) can be used to identify 
the AutoRegressive (AR) and Moving Average (MA) terms 
for the SARIMAX model (the p and q parameters, 
respectively), as well as seasonality. As the number of lags 
increases, we would expect correlation to decrease (we 
would expect higher correlation with closer days rather than 
further days). Values may also be more correlated with 
certain lags due to other reasons. If we identify patterns in 
the plots, this could indicate seasonality. 
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Fig. 3.1​ ACF (Autocorrelation Function) and PACF (Partial Autocorrelation 

Function) plots with 90 lags. Values outside the light blue band are 
considered statistically significant. 

 
From the plots, we see that ACF decays slowly, while 

PACF decreases relatively quicker. This suggests an 
autoregressive process, and we might try fitting the model 
with p = 1 or 2. This parameter along with q will be tuned 
anyways, but this gives us an idea of which values to try 
first. 

There are also peaks every 7 lags, indicating weekly 
seasonality. Empirically, it’s expected that the sales count 
on a Saturday (usually the busiest day of the week) would 
be closer to that from the previous Saturday, rather than 
with the sales count 3 days before on Wednesday (one of 
the slower days of the week). Therefore, it may be best to 
model with the assumption of weekly seasonality. 

 

 
Fig. 3.2​ ACF and PACF plots with 365 lags. 

 
However, an ACF plot with 365 lags shows a sudden 

spike at 364-365 lags, while the corresponding PACF plot 
shows a lesser increase but with values being statistically 
significant (outside the light blue band). This suggests an 
additional yearly seasonality, which complicates the 
situation for Holt-Winters and SARIMAX which only assume 
one seasonal period. 

 
3.3.2 Stationarity 

 
A time series is stationary if its statistical properties such 

as mean and variance do not depend on time. SARIMAX 
assumes stationarity, although this is not a requirement for 
the other three approaches in this project. The Augmented 
Dickey-Fuller (ADF) test can be used to check for 
stationarity. Applying the test to the data results in a p-value 
lower than 0.05, so we can reject the null hypothesis of 
non-stationarity and conclude that the time series is 
stationary. 

 
3.3.3 Seasonal and Trend Analysis with STL 

Decomposition 
 
STL decomposition (Seasonal-Trend decomposition using 

LOESS) decomposes a time series into its trend, seasonal, 
and residual (noise) components. The sum of these three 
components results in the original time series. 

If we decompose and plot the components based on a 
7-day period, we can make out a weekly up-and-down 
pattern (Fig. 4.1). Generally, sales are higher on the 
weekends and lower on the weekdays. However, the 
degree to which sales increase or decrease each week 
varies. From experience, this store usually sees high 
numbers of sales during the days leading up to Christmas, 
as well as the period between the end of July to early 
August (which can be referred to as the “back-to-school” 
shopping season). This can be seen in spikes in the trend 
and seasonal plots, as sales of this product (as well as a 
number of others) may significantly increase during those 
periods. 

 

 
Fig. 4.1​ Plots of trend, seasonal, and residual components from STL 

decomposition with 7-day periods 
 

The residual plot shows that the residuals are clumped 
around a mean of 0, which is a good sign. However, there 
seems to be some more spread over time, beginning 
around the middle of 2020 which happens to mark the 
started of an “era” of uncertainty characterized by a number 
of atypical circumstances including manufacturing issues 
due to the pandemic, changes in fashion (to the benefit of 
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the store), and a social media trend temporarily bringing in 
an unexpected demographic. 

 

 
Fig. 4.2​ Plots of components from STL decomposition with 365-day 

periods 
 
If we decompose the data with 365-day periods, we see a 

much smoother trend curve, as opposed to the noisy trend 
curve from the weekly decomposition. There is a significant 
increase in trend between 2020 and 2021, despite the 
pandemic. One reason for this is that due to difficulties in 
manufacturing during the pandemic, manufacturers 
prioritized the production of the most standard and/or 
popular products, which includes this product. As a result, 
this style of pants was not as negatively affected by 
shortages (at least for the basic color options). On the 
contrary, sales were likely proportionally higher due to the 
lower availability of other options at that time. The trend 
plateaus for about 2 years before steadily declining. 

In the yearly seasonality plot, there is a lot of noise (since 
the data is at a daily level) but we do see spikes around 
August and December each year, coinciding with the 
previously mentioned back-to-school and Christmas 
shopping seasons. There also seems to be slightly higher 
values around March-April and October-November. 

A benefit to decomposing the time series into its 
components is that we can separately model each 
component. In particular, with nested seasonalities such as 
in this case where we have yearly seasonality on top of 
weekly seasonality, for which we can remove one of the 
seasonal components. For instance, we can subtract the 
yearly seasonal component and further decompose the 
remaining trend and residual parts with weekly periods. 

 

 

 

 
Fig. 4.3​ Plots of components from STL decomposition with 7-day periods 
on time series with 365-day seasonal component removed compared with the 

same decomposition on the original data. 
 
Decomposing the time series after removing the yearly 

seasonal component, we do see a reduction in noise across 
all three components. The trend fits the smooth yearly trend 
curve more closely, the variance in weekly seasonally is 
somewhat diminished, and the residuals in the earlier and 
later years are less spread out. Doing this the other way 
around by first removing weekly seasonality results in 
similar reductions in noise. Of course, there still seems to 
be unexplained factors resulting in the observed noise, but 
it’s clear that both weekly and yearly seasonality. 

To summarize the potential issues, the data has nested 
(both weekly and yearly) seasonality, nonlinear trend and 
seasonality, and additional external factors that cannot be 
explained by trend or seasonality. The first two issues are 
problematic for Holt-Winters and SARIMAX but are less of 
an issue for LightGBM and Prophet, while the third issue is 
more complex. There are multiple possible approaches, but 
ultimately the performance of each model will likely depend 
on the flexibility of the method as well as the engineered 
features (if applicable). 

 
3.4 Feature Engineering 

 
LightGBM is not a time series model at its core and 

heavily relies on the engineered features to learn the 
temporal structure of the data. Holt-Winters aside, 
SARIMAX and Prophet may also take extra features in the 
form of exogenous regressors and/or holiday effects. 
Consequently, feature engineering will be the deciding 
factor in the success of these models, at least for those that 
can make use of those features. 

 
3.4.1 Features based on dates 

 
In addition to the product’s base price, I added features 

based on the date. I added numeric/binary features for year, 
month, week, day_of_week, day_of_month, 
week_of_month, is_weekend (Saturday and Sunday), 
is_holiday (from the python holidays package), and 
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closed_day (days when the store is closed). Most of these 
are self-explanatory. The day_of_week feature is an integer 
from 0 to 6 representing Monday through Sunday 
respectively. The week feature is the week number of the 
year based on the ISO calendar system, in which weeks 
start on Monday and are numbered from 1 to 52 or 53. 

 
Fig. 5​ Correlation matrix of initial features. Excludes closed_day. 

 
Looking at the correlation matrix of these features with 

the target and each other, we see that is_weekend, 
day_of_week, year, and base_price are fairly positively 
correlated with the target, and month and (ISO) week are 
somewhat positively correlated. Is_holiday seems to be 
slightly negatively correlated with the target, although this is 
likely due to the inclusion of holidays like Christmas during 
which the store is always closed and are guaranteed to 
have zero values for the target. 

There is multicollinearity which can be seen from the 
correlations between some of the features, which is not a 
surprise given that they are mostly taken from the date. 
Nonlinear tree-based methods like Random Forest and 
LightGBM are fairly robust to multicollinearity and implicitly 
select features, but methods with linear regressors like 
SARIMAX and Prophet are more sensitive to this issue and 
we would need to be more selective of the regressors to 
include. This includes the additional features that I will be 
adding next. 

 

 
Fig. 6​ Plot of (base retail) price over time. 

 
There is a high correlation between base_price and year. 

The reason for this is the base_price only increases over 
time and fairly infrequently. In fact, the plot of the price over 
time (Fig. 6) shows a pattern that is similar to the yearly 
trend (Fig. 4.2). In addition, the positive correlation between 
base_price and the target suggests that there are actually 
more sales of the product when it costs more. It seems that 
base_price effectively represents trend over time, explaining 
its high correlation with year. 

 
3.4.2 Shopping Seasons 

 
The yearly seasonal component plot (Fig. 4.2) shows 

yearly spikes at two particular periods. In the retail context, 
these can be interpreted as the back-to-school (late July to 
early August) and Christmas shopping seasons. While the 
product in question are work pants that are primarily worn 
by adult men, they are also often purchased as schoolwear 
for highschoolers, explaining the higher demand in the days 
leading up to the new school year. Similar to the is_holiday 
feature, including separate features for each of these 
shopping seasons likely improve performance. The issue, 
however, is how to identify which range of dates to include 
for each seasonal period. 

The Christmas shopping season would include a certain 
number of days before Christmas. I simply included binary 
features for 2, 6, 10, and 14 days before Christmas. 

 

 
Fig. 7​ Box plot of target qty vs. (ISO) week. 

 
The back-to-school season is a bit more complicated to 

identify, as the first day of school changes each year and 
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can even differ between school districts. Ideally, we would 
look up the first day of school each year. However, I went 
with a simpler route by identifying a plausible range of dates 
based on prior years. The box plot (Fig. 7) shows generally 
higher values on week 31 (usually starting in the last couple 
days of July) and possibly week 32. I also looked up last 
year’s date for the first day of school in the school district in 
the same city as the store, and it fell on week 33. Therefore, 
I included a back_to_school feature for dates during weeks 
31 and 32. Prophet is a bit more flexible with holiday effects 
so for the Prophet model, I increased the range to include 
the last 7 days of July to the first 15 days of August. 

The back-to-school and Christmas season features are 
fairly positively correlated with the target based on 
correlation coefficients, and may help the models capture 
the seasonal spikes. 

 
3.4.3 Price Change Features 

 
The actual price amount is unlikely to matter for this 

product (it may matter when dealing with multiple different 
products). What is probably more useful from the 
base_price feature are the price increases and the degree 
to which they increase. In addition, price increases could 
possibly have delayed effects on the target (maybe a . 
Therefore, I added price change features based on the ratio 
of current and a past date's price. The features 
price_change_i use the price from i days before. In other 
words, these features represent the multiplicative increase 
in price for each day relative to a prior point in time. I added 
features for 1, 2, 3, 4, 6, and 9 months prior as well as 1 
year prior. 

The price increases are initially slightly negatively 
correlated before becoming slightly positively correlated 
after 4+ months, with a 0.073 correlation for 1 year. These 
correlations may again be influenced to some extent by 
correlations with other features such as month, week, and 
year. 

3.4.4 Lag and Rolling Window Features 
 
LightGBM, unlike the other mentioned methods, does not 

inherently handle sequential or seasonal data. Lag features 
are values from past “lags” (in this case, past days), while 
rolling window features are aggregated values (i.e. mean, 
standard deviation, max, min, etc.) of a window of past 
days. For example, a rolling mean of lag 7 and window 3 
would be the average of the values from 7, 8, and 9 days 
prior. The previous price change features are based on 
lagged values of base_price. 

It is important not to include lags shorter than the horizon 
(in this case, the number of days to forecast into the future). 
For this project, we are aiming to predict sales up to 28 

days into the future i.e. a horizon of 28. Lag and rolling 
window features are based on past target values. If we use 
a lag less than 28, such as a lag of 7, the 7-lag values 
would be unknown starting from the 8th day (we can’t use 
tomorrow’s true value as a feature for 8 days into the future 
since tomorrow’s sale count hasn’t been observed yet). 
Therefore, lagged features need to be shifted back at least 
28 days. 

I just added a number of features of different 
combinations of lags and windows. As these features rely 
on past data, the earlier dates in the dataset will have null 
values for these features. I used lags of up to one year, so I 
dropped the 2018 data from the dataset. 

Since LightGBM is generally robust to multicollinearity 
and implicitly does feature selection to some extent, I fit a 
LightGBM model with all 108 features, then trimmed the 
number of features down based on SHAP values to reduce 
overfitting.  

To avoid multicollinearity with SARIMAX, we would want 
to avoid choosing exogenous regressors that are correlated 
with other regressors. SARIMAX can only handle one 
seasonal period at a time (e.g. weekly or yearly). It also has 
difficulty with longer seasonal periods, so it would probably 
be better to use 7-day seasonal periods and use regressors 
to handle the yearly seasonality. Of the lag and rolling 
window features, I only include lag_363_mean_7 (mean of 
values from 363-365 days prior) as an regressor as it has 
the highest correlation (0.34) with the target of these 
features and can give the model information that it 
otherwise wouldn’t with weekly periods. 

 
3.5 Methods 

 
I will build models using Holt-Winters, SARIMAX, 

LightGBM, and Prophet, as well as using an ensemble of 
the average of their predictions. 

The Holt-Winters method, also known as triple 
exponential smoothing, applies exponential smoothing three 
times and breaks the time series down into three 
components: level, trend, and seasonality. It works well on 
data with clear trends and seasonality and is quite efficient 
in terms of speed, but may be overly-simple as it assumes 
linear trends and seasonality and does not  support multiple 
seasonalities or external regressors, all of which may raise 
issues with our data. 
ARIMA (Autoregressive Integrated Moving Average) 

models the time series as a linear combination of its past 
values, past forecast errors, and differenced values. 
SARIMAX (Seasonal ARIMA with Exogenous Regressors) 
is an extension of ARIMA (which in turn is a generalization 
of ARMA) that adds support for seasonality and exogenous 
regressors. Like Holt-Winters, it still assumes linearity and 
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one seasonal period, but the latter issue could be 
addressed to some extent with regressors. The larger 
downside is that it can be computationally expensive, 
making it time-consuming to tune. 
LightGBM (Light Gradient-Boosting Machine) is a 

tree-based machine learning algorithm. It can handle 
nonlinearities and multiple seasonalities (via feature 
engineering, and is also relatively fast. But because it is not 
a time series model in itself, it requires extensive feature 
engineering, cannot extrapolate trends, and accuracy of 
forecasts can degrade quickly over long horizons. 
Prophet is Meta’s open-source forecasting method that is 

based on an additive model that, according to Meta, fits 
non-linear trends with multiple seasonalities as well as 
holiday effects [8]. As such, they can handle the issues 
previously mentioned with the first two methods. It can also 
run efficiently especially for small to medium-sized datasets, 
and has a relatively simple API that makes it easy to use. 

While offering more flexibility compared to Holt-Winters 
and SARIMAX and is probably the best of the four methods 
for long-term forecasting, Prophet still has its limitations. For 
instance, it would be more accurate to say that it models 
semi-nonlinear trends  through piecewise linear or logistic 
functions, which still involves some rigidity. However, the 
STL decomposition (Fig. 4.2) does seem to suggest that 
this may not be an issue. Also, it does not model 
autocorrelation unlike SARIMAX (inherently included), 
LightGBM (through lag features), and to some extent 
Holt-Winters (implicitly through smoothed past values). In 
other words, while it models trend, seasonality, and 
specified holiday effects, it does not assume dependencies 
with past values (e.g. today’s value depends on yesterday’s 
value). One workaround is to add lag features, but this may 
lead to overfitting with how the model is implemented so I 
will only add holiday effects for the Prophet model. 

I will also ensemble the models using the average of their 
forecasts to see if it improves performance. There are other 
options of ensembling such as taking a weighted mean 
based on metrics or tuning the weights, but for the sake of 
time I will just use the simple average. 
 
 
4 Evaluation 
 
4.1 Evaluation Metrics 

 
To evaluate the predictive models, I will use four metrics: 

RMSE, RMSLE, MAE, and SMAPE. 

●​  𝑅𝑀𝑆𝐸 =  1
𝑛

𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖( )2

●​  𝑅𝑀𝑆𝐿𝐸 =  1
𝑛

𝑖=1

𝑛

∑ 𝑙𝑜𝑔(𝑦
𝑖

+ 1) − 𝑙𝑜𝑔(𝑦
𝑖

+ 1)( )2

●​  𝑀𝐴𝐸 = 1
𝑛

𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖

|||
|||

●​  𝑆𝑀𝐴𝑃𝐸 = 1
𝑛

𝑖=1

𝑛

∑
𝑦

𝑖
 − 𝑦

𝑖
|||

|||

𝑦
𝑖| | + 𝑦

𝑖
|||

|||( )2
/ 2

 
Mean Absolute Error (MAE) is the average distance 

between predicted and actual values, and is easy to 
interpret. Root Mean Squared Error (RMSE) is similar but 
penalizes larger differences. I will minimize RMSE (or 
maximize the negative MSE when using sklearn’s 
RandomizedSearchCV) during hyperparameter tuning. 
Root Mean Squared Logarithmic Error (RMSLE) 

measures relative error as a ratio and is good for skewed 
data, as with this right-skewed data. For instance, predicting 
10 for 5 and 100 for 50 are both off by 2 times the actual 
value (technically, they’re treated slightly differently since 
each value is increased by 1 to handle zero values). 
RMSLE also penalizes underestimations more than 
overestimations, which is often useful in various business 
contexts. In the context of product demand, overestimations 
can result in a surplus of inventory from over-ordering while 
underestimations can lead to loss of potential sales. If 
surpluses are less of a risk, we would care more about 
underestimating demand. In contrast, RMSE treats the size 
of over- and underestimates the same and punishes larger 
mistakes, the latter of which can penalize models for bad 
predictions of outliers which can skew results. 
Symmetric Mean Absolute Percentage Error (SMAPE) 

measures the percentage difference between actual and 
predicted values, and like RMSLE, is less sensitive to 
outliers and handles zeroes unlike MAPE (division by 0 
occurs only when both actual and predicted values are 0, 
but can be handled by return 0 or ignoring these points). 
Compared to RMSLE, SMAPE reports error as a 
percentage rather than ratio which may be more intuitive, 
and it penalizes over- and underestimates equally. It is also 
scale-independent, so it can be used to compare with other 
time series data of different scales such as other products 
or the same product’s sales at another store. However, 
while it is more forgiving to mispredictions of large outliers, 
SMAPE is much more sensitive to small values, especially 
near 0. For example, if the actual value is 0 and the 
predicted value is 1 (or vice versa), it would have an error of 
200% which may lead to a misleading SMAPE score. At a 
daily level, it is not rare to sell none of a specific product on 
some days so we may see some inflated values for 
SMAPE. At a less granular level such as weekly, no sales 
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for one period of time may be unlikely (depending on the 
product) which would make SMAPE more of a meaningful 
metric. 

Different models may do better than others under different 
contexts, and evaluating them with these four metrics can 
give us insight into how well they perform under different 
situations. 

 
4.2 Experimental Setup 

 
I split the data into a training set to fit the models and a 

test set for evaluation. Because it is a time series, I split the 
data chronologically rather than randomly since the training 
set should contain data for dates before those in the test 
set. The forecast horizon is 28 days so in practice, the 
model would need to be evaluated on at most 28 days after 
the last day in the training set. It would also be ideal to 
evaluate the models on at least one year of test data to see 
how they perform across different periods of the year. 

I will use an expanding window cross-validation approach 
for evaluation as well as for hyperparameter tuning. I took 
the following steps: 

1.​Use the last 364 days (roughly 1 year) to create 13 
folds of 28 (forecast horizon size) consecutive days 
each. 

2.​Fit the model with the initial training set and evaluate on 
the first fold for the dates that chronologically occur 
directly after the last day in the training set, and record 
the metrics. 

3.​Expand the training set window by adding the previous 
test fold to the training set, and repeat for each 
consecutive fold. 

4.​Take the average of each evaluation metric to measure 
the average performance of the model across the 13 
folds. 

Forecasting accuracy decreases for days further in the 
future, so simply evaluating using one-year’s worth of data 
would not be reflective of the actual performance of the 
model. Assuming the model would be refitted on updated 
training data for each forecast, expanding window 
cross-validation would effectively simulate the model’s 
real-world application. 

The test set includes the last 364 days in the dataset from 
June 3, 2024 to June 1, 2025 (which is split into 13 folds for 
evaluation). In addition, the 364 days from June 5, 2023 to 
June 2, 2024 are used for cross-validation during 
hyperparameter tuning. 

One final thing to mention is that predictions for closed 
days (e.g. Christmas) can be ignored because they will 
always have zero counts, so I will manually set their 
predictions to 0. 

 

4.3 Results 
 
As a baseline, I made a naïve forecast by simply taking 

the average of the training set values and using it as the 
predicted value for all forecasts on the test, resulting in 
RMSE = 4.3680, MAE = 3.3521, RMSLE = 0.8260, and 
SMAPE = 67.9012 (compare with Fig. 12.1). 

 
4.3.1 Holt-Winters 

 
Since Holt-Winters only handles one type of seasonality 

at a time, I fit models for both seasonal_periods = 7 (SP=7) 
and 364 (SP=364). 364 periods performs better than 365 
since it lines up with the weekly seasonality due to being 
divisible by 7 and isn’t sensitive to leap years. 

 

 
Fig. 8​ Forecasts on the 13 test-folds for Holt-Winters with 7 (green) and 
364 (red) seasonal_periods and an ensemble average (blue), with associated 

average RMSEs across folds included in the legend.  
 
The SP=7 model has a lower RMSE of 3.8594 compared 

to the SP=364 model’s RMSE of  4.0378, both of which are 
an improvement to the naïve forecast RMSE of 4.3580. 
However, the SP=364 model has a lower RMSE of 3.5439 
for fitted values (prediction on training set) compared to the 
SP=7 model’s fitted RMSE of 4.1436. SP=364 is more 
flexible in capturing spikes in the data but overfits on the 
training data, while SP=7 makes smaller errors but has less 
variability in values since Holt-Winters assumes constant 
seasonal patterns. 

An ensemble model that averages the predictions of the 
SP=7 and SP=364 models results in a more balanced 
forecast with a lower RMSE of 3.7633, as it keeps some of 
the flexibility of the SP=364 predictions while being kept in 
check by the SP=7 predictions (Fig. 9). 

 
4.3.2 SARIMAX 

 
For SARIMAX, I fit one model without exogenous 

regressors (SARIMA) and another with regressors. Both 
used 7 periods for seasonality. I chose three regressors for 
the SARIMAX model: back_to_school, 6d_to_christmas, 
and lag_363_mean_3 (the mean target value for 363-365 
days prior). To capture yearly seasonality, I chose these 
three regressors that had relatively high correlation 
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coefficients with the target. I limited it to these three to avoid 
multicollinearity. While it is possible to try different 
combinations of regressors, SARIMAX takes substantially 
longer to fit which makes tuning very time-consuming. 

 

 
Fig. 9​ Forecasts on the 13 test-folds for SARIMA (red) and SARIMAX 

(blue). 
 
SARIMA suffers the similar issues to Holt-Winters with 7 

seasonal periods, and fails to capture yearly seasonal 
spikes. External regressors add extra context to the model 
for certain seasonal periods as well as the previous year’s 
values, leading to an improved SARIMAX model with RMSE 
of 3.7024, slightly beating out the Holt-Winters ensemble. 
While the predictions still have less variation than the 
Holt-Winters ensemble, it can also be said that the 
predictions are more stable and less prone to many large 
errors. 

 
4.3.3 LightGBM 

 
I first fit a LightGBM model using all 108 features, 

resulting in an RMSE of 3.7024, basically exactly the same 
as SARIMAX. There are some differences, as LightGBM 
does significantly better on the fitted values which suggests 
overfitting for LightGBM but possibly less underfitting 
compared to SARIMAX, while SARIMAX does slightly better 
in the other metrics like MAE and SMAPE. 

While feature selection isn’t as important for tree-based 
methods, which choose the optimal feature at each fold, 
dimensionality reduction can still result in performance 
improvements by potentially reducing overfitting and 
increasing speeds. 

LightGBM does provide feature importances to measure 
the importance of each feature to the model. By default, 
these values are based on the number of times each 
feature was used to split the data but this can be misleading 
for features that might be important for a minority of 
instances (e.g. days leading up to Christmas). Instead, I 
perform feature selection by computing SHAP values as a 
measure of feature importance and removing features with 
SHAP values under a certain threshold. 

 

 
Fig. 10​ Mean absolute SHAP values over 13 validation-folds for 

LightGBM with 108 features. 
 
By looking at the SHAP values, we can get a sense of 

which features are influential for the model, and which are 
unimportant. Interestingly, all of the price change features 
have very low values suggesting that price changes barely if 
at all affect the number of sales for this particular product. 
Meanwhile, as expected there are a number of seasonal 
features at the upper end of the spectrum including 
day_of_week, back_to_school, and 6d_to_christmas, along 
with a number of lag and rolling window features. 

I tuned the threshold for removing features by fitting and 
evaluating models through cross-validation, which resulted 
in an optimal threshold of 0.7. This resulted in a large 
reduction from 108 to just 14 features (the leftmost 14 
features in Fig. 10). In addition to only requiring a fraction of 
the original feature set, this reduction resulted in a very 
slight improvement of RMSE down to 3.7016, but more 
importantly reducing the MAE, RMSLE, and sMAPE scores 
below those of the SARIMAX models. While the actual 
differences in accuracy might be negligible between the 
SARIMAX and reduced LightGBM models, the LightGBM 
model runs significantly faster (discussed in Section 5). 

 
4.3.4 Prophet 

 
The Prophet model had improved scores for each of the 

four metrics, including an RMSE of 3.6152. Note that this 
was with holiday effects but without regressors including no 
lag features. Prophet also has a function to easily plot the 
trend, holiday, as well as the weekly and yearly seasonal 
components (Fig. 11). 

The trend, despite being piecewise linear, is similar to that 
of the STL decomposition (Fig. 4.2). We also see strong 
holiday effects for back-to-school and the leadup to 
Christmas, and possibly important effects for other holidays. 
We also get an expected pattern for weekly seasonality, but 
we also get an interesting smoothed curve for yearly 
seasonality. There are peaks around August and December, 
possibly effects that weren’t fully captured by the holiday 
component.  However, we also seem to see patterns for 
other months, including smaller peaks around March-April 
and October-November (as was somewhat observed in Fig. 
4.2) and dips around February and May. 
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Fig. 11​ Prophet trend, holidays, weekly, and yearly component plots 

 
Despite not utilizing an autoregressive approach, Prophet 

is able to model trends and seasonalities in a flexible 
manner allowing it to discover patterns that weren’t as 
easily identified through other methods, likely being a factor 
to its better performance. 

 
4.3.5 Ensemble Average and Model Comparisons 

 
An ensemble model was built by simply taking the 

average of the best models for each of the four methods, 
and resulted in lower RMSE, MAE, and SMAPE, and only 
being slightly beaten out by Prophet in RMSLE. 

 

 
Fig. 12.1​ RMSE, MAE, RMSLE, and SMAPE averages across 13 test-folds  

for the Holt-Winters (ensemble average of 7 and 364 seasonal periods), 
SARIMAX with three exogenous regressors, LightGBM with 14 features, 

Prophet with holiday effects (no regressors), and an ensemble of the average 
of the four models’ predictions. 

 
When comparing the average of metrics across folds (Fig. 

13.1), Prophet seems to be the best single method for 
RMSE, MAE, and RMSLE, while LightGBM does somewhat 
better in SMAPE. Holt-Winters, despite having lower RMSE, 
MAE, and SMAPE, has a comparable RMSLE to Prophet. 

In terms of speed, the Holt-Winter model took 
approximately 0.5 seconds and 1.24 seconds with 
seasonal_periods = 7 and 364 respectively. A tuned 
Prophet model took 0.38 seconds, although a Prophet 
model with default parameters took significantly longer at 
4.0 seconds. LightGBM with 14 features took just 0.04 
seconds to fit, but even with 108 features it required 0.34 
seconds which is still faster than the other methods. 
However, it does take a considerable amount of time to 
compute the SHAP values of the 108 features. The runtime 
for single fit of the SARIMAX model was 25.75 (14.04 

seconds without regressors), making it by far the most 
computationally expensive of these approaches. 

 

 
Fig. 12.2​ RMSE of each test-fold for each model. 

 
When comparing performance for each individual fold, 

there is no clear best model across all folds. It is possible 
that each model performs better under certain 
circumstances. For instance, despite having slightly worse 
average metrics compared to LightGBM and running much 
slower, it has the lowest RMSE during the fold containing 
the back-to-school dates. Holt-Winter, despite having the 
worst average RMSE, actually has the best RMSE for 
certain folds although struggles for other folds. These folds 
seem to correspond with yearly seasonality, suggesting that 
it performs worse with higher seasonal effects but 
conversely has more potential during stable seasons. 

The ensemble is able to balance out the strengths and 
weaknesses of each model. While it might not always result 
in the best predictions for specific folds compared to 
individual models, it is able to make relatively good 
predictions across the folds. 

 
5 Discussion 

 
One major change that I made to this project was to 

change the problem itself and nearly start over from scratch. 
I originally tried to forecast customer traffic at a sub-hourly 
level, but it was a complex problem. Due to higher variance 
at finer granularity, Random Forest, LightGBM, and even 
Prophet models were making predictions that were basically 
predicting a smooth curve. This may be fine for predicting 
averages but the models did not even attempt to capture 
spikes and dips in the data, defeating the purpose of the 
project. 

Changing the scope of the problem to a daily level gave 
more meaningful results, but still suffers from this issue. The 
reality is that even with daily rather than sub-hourly 
forecasts, the prediction errors are still too high. Even with a 
MAE of 2.87, most values are in the single digits (with a 
median of 5) so an actual value of 5 can easily be 
mispredicted as 2 or 8, which is reflected by the generally 
high SMAPE scores. This is due to the high variability of 
sales at a daily level. In practice, however, predicting daily 
sales may be overkill. Often, it may suffice to forecast at 
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one- or even two-week intervals, which would also remove 
the need to model weekly seasonality. 

 

 
Fig. 13​ Average metrics across test-folds of weekly sums of forecasts 
 
If we were to group the actual and predicted values by 

week to predict weekly counts, we get results that may be 
more applicable for a real-world situation (such as 
restocking the product based on forecasted demand for the 
following week). For instance, the ensemble predictions are 
off by 8.15 on average at a 7-day level, compared to 2.87 at 
a 1-day level. It’s also possible to get better weekly results 
through other ensemble methods such as through stacking 
by training another meta on the daily forecasted values. 

Another challenge was dealing with unclear seasonal 
trends. I was able to identify the back-to-school and 
Christmas shopping seasons, but it was less clear as to 
how many days to include for those seasons. In addition 
there were other possible seasons with lower yet significant 
seasonal effects that weren’t as easily identified. The 
Prophet model may have done better since it was able to 
automate this process to an extent. More experimentation 
with feature engineering may be able to improve results. 

In addition to ensembling methods, more extensive 
feature engineering, and further hyperparameter tuning, 
there are other approaches that could be taken. TBATs is a 
statistical model that uses exponential smoothing like 
Holt-Winters, but can also deal with multiple seasonalities. 
In addition, like SARIMAX, incorporates ARMA 
(AutoRegressive Moving Average) terms among other 
extensions. As such, it can be better for handling complex 
time series data. There are also deep learning methods 
such as LSTMs (Long Short-Term Memory), CNNs 
(Convolutional Neural Networks), as well as NeuralProphet 
(an extension to Prophet utilizing neural networks) have 
been shown to be viable especially for capture complexities 
in data, although these models may not perform as well on 
smaller datasets. 

 
6 Conclusion 

 
Generally, the Prophet model gave the most accurate 

forecasts, while LightGBM was the second-best in terms of 
accuracy but was substantially faster than the other 
methods. SARIMAX was comparable to LightGBM in terms 

of accuracy but much slower. Holt-Winters was fast but was 
also the least accurate overall. At a per-fold level, however, 
each model had the potential to do better (or worse) than 
the others. As a result, the ensemble average returned 
somewhat stabilized predictions leading to slightly higher 
accuracy. Further feature engineering, exploring other 
methods that can deal with complex data, and 
experimentation with different ensembling methods may 
lead to further performance improvements. 

While the evaluations of the daily forecasts were 
disappointing, results showed more promise for lower levels 
of granularity which is sufficient for many real-world 
applications. Furthermore, this project shows that even a 
dataset much smaller and limited in information than those 
of large corporations may still be viable for trend and 
seasonality analysis as well as forecasting, especially when 
domain knowledge is applied during feature engineering. 
While daily forecasts on a single product’s sales may not be 
practical especially for smaller datasets, the problem and 
approaches used can be extended to lower granularities (as 
just mentioned) or to different product levels (different 
sizes/colors, between products, by categories, etc.). The 
results of this project show that there is potential to create 
business solutions that small local retailers may seek to 
improve their operations. 
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