
1

Product Sales Forecasting for Local Retail Store

Isaac Jeon​

 MS Computer Science​
 University of Colorado Boulder​

 Boulder, CO
 isje4596@colorado.edu

Analysis and prediction of product sales provide valuable
information that businesses can use in gauging product
demand and restocking of items. This project makes use of
a dataset of transactions for a single small clothing retail
store while incorporating weather data to analyze and
predict customer foot traffic. Deep learning methods such as
LSTMs may struggle for smaller datasets. Fortunately,
statistical methods such as exponential smoothing and
ARMA (Autoregressive Moving Average) models as well as
machine learning algorithms like LightGBM may be viable
for small to medium-sized datasets. In particular, extensive
feature engineering such as the addition of holiday effects
and lag features informed by a combination of exploratory
data analysis and domain knowledge may compensate for
the smaller amount of available data.

Models were built using Holt-Winters, SARIMAX,
LightGBM, and Prophet. Evaluating on 13 test folds of 28
days each, the Prophet model performed the best with an
average RMSE of 3.6152, while LightGBM and SARIMAX
performed similarly to each other at 3.7016 and 3.7024
respectively, followed by an ensemble average of two
Holt-Winters models using different seasonal periods at an
RMSE of 3.7633. Model performance seemed to largely
depend on how well it can capture seasonal patterns.
However, different models performed better in different
folds, raising the possibility that certain models may excel
over others under different contexts. Ensembling the four
models by taking the average of their predictions stabilizes
these forecasts and results in improved performance with
an RMSE of 3.5843. These errors are too high for practical
use, highlighting the limitations that arise from the high
variability at a granular level, especially for smaller datasets.
However, forecasting at broader intervals such as at a
weekly level may still be viable for real-world application.

 1 Introduction

Retail sales forecasting is a common problem of interest

for retailers, which can be utilized for predicting demand of
certain products as well as for inventory management by
taking into account potential future sales. While these
benefits apply to large retailers like Walmart and Target for
maximizing sales, small “mom and pop” stores with much

lower employee counts can also see immense gains from
such solutions, arguably to an even greater extent as the
risks made from over or underestimating future sales can be
proportionally more costly. However, there are additional
challenges that arise in this setting: the quality and quantity
of data. Many local businesses are unlikely to have vast
amounts of clean and rich data, and any usable data would
be a result of simple bookkeeping. On the other hand,
working at a smaller scale can allow for easier
understanding of the ins and outs of that particular store,
which can aid in feature engineering that may compensate
for the relative lack of data.

For this project, I will utilize data containing a small
individually-owned clothing retailer’s history of sales
transactions to analyze and predict 28-day forecasts of daily
sales for a particular product. In particular, I analyze
correlations, trends, and seasonality in the data to aid in
feature engineering as well as my choices for modeling. I
then build models using four approaches: Holt-Winters,
SARIMAX, LightGBM, and Prophet, as well as an ensemble
of these models. Finally, I evaluate the results with
expanding window cross-validation on a number of metrics.

2 Related Works

The Corporación Favorita Grocery Sales Forecasting

Kaggle competition provides data from their grocery stores
[1]. While the scale of the dataset is much larger and the
genre of products is different (as opposed to my clothing
dataset), we can get a general idea of which techniques
may or may not work well. Ganguly et al. [2] found that a
Linear Regression method fell short due to the grocery
dataset’s complexity, and that machine learning algorithms
like Random Forest, Gradient Boosting, Support Vector
Regression, and XGBoost performing comparatively better,
with Random Forest coming out on top out of these
approaches. Other methods include deep learning methods
such as LSTMs or CNNs. The winning model of the
competition, however, seems to be based on LightGBM
(Light Gradient-Boosting Machine). It seems that tree-based
models seem to do well for this particular task.

Walmart also provides a similar dataset in the M5
Forecasting - Accuracy Kaggle competition [3], in which

2

ensembles of LightGBM models were extensively used
among the top competitors. However, simpler models such
as exponential smoothing (such as Holt-Winters) as well as
ARIMA models were found to be viable especially at a store
or product-store level [4].

3 Proposed Work

My project involves the daily sales of a single style of

work pants from a specific brand aggregated across
different sizes and colors for a single store. The goal is to
analyze and identify important factors and trends in the
data, and forecast sales for up to 28 days into the future.

The dataset was sourced from a local clothing retail store
owned and operated by a relative of mine. While this seems
like a simplification of the related works above, it differs in
its context. First, the dataset is much smaller in scale and
likely not as tidy as those from larger corporations. In
addition, I have actually worked at this store a number of
years ago so I have some domain knowledge that I can
leverage for this project. While I am far from an expert in
this field, I am fairly familiar with the dataset and what may
be required for data cleaning, interpreting the results of
analyses, as well as feature engineering. This is somewhat
akin to a data analyst taking input from a domain specialist,
and by taking both roles I might hope to gain some insight
into what each may require from the other.

In addition, I chose a specific product that could, in a
sense, be considered representative of the data as a whole,
similar to a cheeseburger at McDonald’s. This particular
pants style is the most basic of its category, is relatively
affordable, and is not as affected by seasonality compared
to other items like shorts or jackets. It is also least likely to
be affected by external factors, or rather, as a “staple” item if
it is affected by external factors, other items are likely to be
similarly affected (this isn’t completely true, as I’ll briefly
touch up later). Therefore, analysis on this specific product
can be a good baseline in judging the feasibility of future
projects involving this store’s dataset, as well as be a
starting point for extending to other problems such as
analysis of seasonally-sensitive items or forecasting on a
different level such as forecasting across different products
or across different colors and/or sizes of the same product
style.

3.1 Dataset

The dataset contains a time series of dates, times,

invoice number (i.e. the ID number of a single transaction),
description of a unique product, quantity of the item
purchased, price, and sales status. The product description

is a string that contains the product name, and if applicable,
color and/or size. Sale status indicates whether the item
was sold, discounted, returned (exchanged or refunded), or
voided (cancelled, usually in cases of error on the cashier’s
part), which is necessary for adjusting prices or completely
removing certain rows. There are other irrelevant or
unnecessary columns that I omitted. Each row involves a
single item purchased in a specific transaction, meaning
that a transaction with multiple items will be represented by
multiple rows (with the same date, time, and invoice
number).

Data starts from January 2, 2018 and ends on June 1,
2025. Data exists for prior years but the store moved
location at some point resulting in a number of changes
during its transition, so I chose to start from a year that
better reflects the store in its current state.

3.2 Data Preprocessing and Cleaning

Before anything, I needed to process the data in the

proper format for my problem, specifically the daily sales
counts for the product. I also included the base price of the
product (price goes up at certain size thresholds) which
could be used to identify price increases. Basically, I filtered
for sales of this specific product based on product
description, ignoring color and size, and summed the
quantities sold for each day.

While this seems straightforward, there were a number of
issues I addressed. The few notable issues were: Single
transactions of a large quantity of the item, non-standard
sales statuses (voided, discounted, returns), and dates with
no sales of the product.

The first issue just involved removing outliers above a
certain threshold as they would skew the data if left alone.
These are often large purchases from local businesses or
organizations and in reality would be handled differently
from regular transactions. For the second issue, voided
sales were simply removed, while discounted sales had
prices reverted to their original retail price. Returns were
handled more carefully.

The third issue was a bit more complicated. There are
three possibilities for days with no sales: it was a normal
business day that just didn’t have any sales of this particular
product, it was a holiday that the store was closed for (i.e.
Christmas, New Year’s Day), or the store was closed due to
unforeseen events (in particular, a lockdown during the
Covid-19 pandemic). The first two cases are simple, as we
simply create rows for the dates with zero counts. For the
closed holidays, I added a column indicating whether or not
the store was a regularly-scheduled closed day.

As for the third case, it would be hard to catch single days
where they suddenly needed to close (unless the store kept

3

it on record somewhere), although even then it may not be
a big issue to ignore these instances. However, during the
COVID-19 pandemic, California implemented a "stay at
home" order, requiring non-essential services to close. This
forced the store to close from March 20 to May 7, 2020,
until May 8 when the lockdown was partially lifted for certain
businesses including clothing stores. As a result, there are 7
consecutive weeks of missing data, which will be a problem
for time series models. While some algorithms like
LightGBM do not necessarily require data for all dates,
there will be issues when adding lag and rolling window
features, which rely on values from past instances. As such,
rather than assigning zero counts or completely ignoring
these instances, it would be better to impute target values
based on other values from the dataset.

Fig. 1​ Plot quantities in 2019-2021 after imputing missing values

(purple) during the 2020 lockdown.

For the lockdown period, I imputed the median of the

target values from 357, 364, and 371 days prior, multiplied
by the ratio of the sum of values from 28 days (4 weeks)
before and after the lockdown period to that of the
corresponding days (364 days prior) from 2019, and
rounded to the nearest integer. Essentially, for each of these
dates I chose a value based on “similar” past dates (same
day of week, roughly one year prior), and multiplied by a
“yearly effect” value to try to take into account the change in
trend from the prior to current year.

3.3 Exploratory Data Analysis

The data (Fig. 2) shows a right-skewed distribution with a

mean of roughly 5.91 slightly above the median of 5. A
relatively high standard deviation of 4.39 compared to the
mean suggests notable variability. Values range from 0 to
36, although with a 75th percentile of 8. Certain models
assume normality, so applying a transformation to the target
may improve performance.

Fig. 2​ KDE plot of target (blue), as well as of log, square-root, and

Box-Cox transformations of the target. Skewness measures the asymmetry
of the distribution, with values closer to 0 indicating more symmetry.

In particular, the Box-Cox transformation results in a fairly

normal distribution with a skewness value of -0.0156,
indicating a slightly heavier left-tail likely due to the counts
being lower-bounded on 0. Box-Cox, along with the log
transformation, only takes positive values. Since the counts
can be zero, we would add a constant to each target value
(adding 1 is simplest, but may be another value that can be
tuned), and revert the transformation and subtract the
constant from resulting predictions. The statsmodels
Holt-Winters method includes a parameter for applying the
Box-Cox transformation, although it may need to be
manually applied for other methods such as SARIMAX.

3.3.1 Autocorrelation and Partial Autocorrelation

Autocorrelation measures the correlation of a time series

with a delayed version of itself. For instance, autocorrelation
of a daily time series with 3 lags would be the correlation of
each day’s value with the value from 3 days earlier
respectively. Partial autocorrelation is similar but removes
the influence of earlier lags, thus representing the direct
effect of the lag. Continuing the previous example, the ACF
at lag 3 would be influenced by correlations at lags 1 and 2,
but PACF removes those effects and gives an isolated
measure of the correlation between the current and 3-day
lagged values.

The ACF and PACF plots (Fig. 3) can be used to identify
the AutoRegressive (AR) and Moving Average (MA) terms
for the SARIMAX model (the p and q parameters,
respectively), as well as seasonality. As the number of lags
increases, we would expect correlation to decrease (we
would expect higher correlation with closer days rather than
further days). Values may also be more correlated with
certain lags due to other reasons. If we identify patterns in
the plots, this could indicate seasonality.

4

Fig. 3.1​ ACF (Autocorrelation Function) and PACF (Partial Autocorrelation

Function) plots with 90 lags. Values outside the light blue band are
considered statistically significant.

From the plots, we see that ACF decays slowly, while

PACF decreases relatively quicker. This suggests an
autoregressive process, and we might try fitting the model
with p = 1 or 2. This parameter along with q will be tuned
anyways, but this gives us an idea of which values to try
first.

There are also peaks every 7 lags, indicating weekly
seasonality. Empirically, it’s expected that the sales count
on a Saturday (usually the busiest day of the week) would
be closer to that from the previous Saturday, rather than
with the sales count 3 days before on Wednesday (one of
the slower days of the week). Therefore, it may be best to
model with the assumption of weekly seasonality.

Fig. 3.2​ ACF and PACF plots with 365 lags.

However, an ACF plot with 365 lags shows a sudden

spike at 364-365 lags, while the corresponding PACF plot
shows a lesser increase but with values being statistically
significant (outside the light blue band). This suggests an
additional yearly seasonality, which complicates the
situation for Holt-Winters and SARIMAX which only assume
one seasonal period.

3.3.2 Stationarity

A time series is stationary if its statistical properties such

as mean and variance do not depend on time. SARIMAX
assumes stationarity, although this is not a requirement for
the other three approaches in this project. The Augmented
Dickey-Fuller (ADF) test can be used to check for
stationarity. Applying the test to the data results in a p-value
lower than 0.05, so we can reject the null hypothesis of
non-stationarity and conclude that the time series is
stationary.

3.3.3 Seasonal and Trend Analysis with STL

Decomposition

STL decomposition (Seasonal-Trend decomposition using

LOESS) decomposes a time series into its trend, seasonal,
and residual (noise) components. The sum of these three
components results in the original time series.

If we decompose and plot the components based on a
7-day period, we can make out a weekly up-and-down
pattern (Fig. 4.1). Generally, sales are higher on the
weekends and lower on the weekdays. However, the
degree to which sales increase or decrease each week
varies. From experience, this store usually sees high
numbers of sales during the days leading up to Christmas,
as well as the period between the end of July to early
August (which can be referred to as the “back-to-school”
shopping season). This can be seen in spikes in the trend
and seasonal plots, as sales of this product (as well as a
number of others) may significantly increase during those
periods.

Fig. 4.1​ Plots of trend, seasonal, and residual components from STL

decomposition with 7-day periods

The residual plot shows that the residuals are clumped
around a mean of 0, which is a good sign. However, there
seems to be some more spread over time, beginning
around the middle of 2020 which happens to mark the
started of an “era” of uncertainty characterized by a number
of atypical circumstances including manufacturing issues
due to the pandemic, changes in fashion (to the benefit of

5

the store), and a social media trend temporarily bringing in
an unexpected demographic.

Fig. 4.2​ Plots of components from STL decomposition with 365-day

periods

If we decompose the data with 365-day periods, we see a

much smoother trend curve, as opposed to the noisy trend
curve from the weekly decomposition. There is a significant
increase in trend between 2020 and 2021, despite the
pandemic. One reason for this is that due to difficulties in
manufacturing during the pandemic, manufacturers
prioritized the production of the most standard and/or
popular products, which includes this product. As a result,
this style of pants was not as negatively affected by
shortages (at least for the basic color options). On the
contrary, sales were likely proportionally higher due to the
lower availability of other options at that time. The trend
plateaus for about 2 years before steadily declining.

In the yearly seasonality plot, there is a lot of noise (since
the data is at a daily level) but we do see spikes around
August and December each year, coinciding with the
previously mentioned back-to-school and Christmas
shopping seasons. There also seems to be slightly higher
values around March-April and October-November.

A benefit to decomposing the time series into its
components is that we can separately model each
component. In particular, with nested seasonalities such as
in this case where we have yearly seasonality on top of
weekly seasonality, for which we can remove one of the
seasonal components. For instance, we can subtract the
yearly seasonal component and further decompose the
remaining trend and residual parts with weekly periods.

Fig. 4.3​ Plots of components from STL decomposition with 7-day periods
on time series with 365-day seasonal component removed compared with the

same decomposition on the original data.

Decomposing the time series after removing the yearly

seasonal component, we do see a reduction in noise across
all three components. The trend fits the smooth yearly trend
curve more closely, the variance in weekly seasonally is
somewhat diminished, and the residuals in the earlier and
later years are less spread out. Doing this the other way
around by first removing weekly seasonality results in
similar reductions in noise. Of course, there still seems to
be unexplained factors resulting in the observed noise, but
it’s clear that both weekly and yearly seasonality.

To summarize the potential issues, the data has nested
(both weekly and yearly) seasonality, nonlinear trend and
seasonality, and additional external factors that cannot be
explained by trend or seasonality. The first two issues are
problematic for Holt-Winters and SARIMAX but are less of
an issue for LightGBM and Prophet, while the third issue is
more complex. There are multiple possible approaches, but
ultimately the performance of each model will likely depend
on the flexibility of the method as well as the engineered
features (if applicable).

3.4 Feature Engineering

LightGBM is not a time series model at its core and

heavily relies on the engineered features to learn the
temporal structure of the data. Holt-Winters aside,
SARIMAX and Prophet may also take extra features in the
form of exogenous regressors and/or holiday effects.
Consequently, feature engineering will be the deciding
factor in the success of these models, at least for those that
can make use of those features.

3.4.1 Features based on dates

In addition to the product’s base price, I added features

based on the date. I added numeric/binary features for year,
month, week, day_of_week, day_of_month,
week_of_month, is_weekend (Saturday and Sunday),
is_holiday (from the python holidays package), and

6

closed_day (days when the store is closed). Most of these
are self-explanatory. The day_of_week feature is an integer
from 0 to 6 representing Monday through Sunday
respectively. The week feature is the week number of the
year based on the ISO calendar system, in which weeks
start on Monday and are numbered from 1 to 52 or 53.

Fig. 5​ Correlation matrix of initial features. Excludes closed_day.

Looking at the correlation matrix of these features with

the target and each other, we see that is_weekend,
day_of_week, year, and base_price are fairly positively
correlated with the target, and month and (ISO) week are
somewhat positively correlated. Is_holiday seems to be
slightly negatively correlated with the target, although this is
likely due to the inclusion of holidays like Christmas during
which the store is always closed and are guaranteed to
have zero values for the target.

There is multicollinearity which can be seen from the
correlations between some of the features, which is not a
surprise given that they are mostly taken from the date.
Nonlinear tree-based methods like Random Forest and
LightGBM are fairly robust to multicollinearity and implicitly
select features, but methods with linear regressors like
SARIMAX and Prophet are more sensitive to this issue and
we would need to be more selective of the regressors to
include. This includes the additional features that I will be
adding next.

Fig. 6​ Plot of (base retail) price over time.

There is a high correlation between base_price and year.

The reason for this is the base_price only increases over
time and fairly infrequently. In fact, the plot of the price over
time (Fig. 6) shows a pattern that is similar to the yearly
trend (Fig. 4.2). In addition, the positive correlation between
base_price and the target suggests that there are actually
more sales of the product when it costs more. It seems that
base_price effectively represents trend over time, explaining
its high correlation with year.

3.4.2 Shopping Seasons

The yearly seasonal component plot (Fig. 4.2) shows

yearly spikes at two particular periods. In the retail context,
these can be interpreted as the back-to-school (late July to
early August) and Christmas shopping seasons. While the
product in question are work pants that are primarily worn
by adult men, they are also often purchased as schoolwear
for highschoolers, explaining the higher demand in the days
leading up to the new school year. Similar to the is_holiday
feature, including separate features for each of these
shopping seasons likely improve performance. The issue,
however, is how to identify which range of dates to include
for each seasonal period.

The Christmas shopping season would include a certain
number of days before Christmas. I simply included binary
features for 2, 6, 10, and 14 days before Christmas.

Fig. 7​ Box plot of target qty vs. (ISO) week.

The back-to-school season is a bit more complicated to

identify, as the first day of school changes each year and

7

can even differ between school districts. Ideally, we would
look up the first day of school each year. However, I went
with a simpler route by identifying a plausible range of dates
based on prior years. The box plot (Fig. 7) shows generally
higher values on week 31 (usually starting in the last couple
days of July) and possibly week 32. I also looked up last
year’s date for the first day of school in the school district in
the same city as the store, and it fell on week 33. Therefore,
I included a back_to_school feature for dates during weeks
31 and 32. Prophet is a bit more flexible with holiday effects
so for the Prophet model, I increased the range to include
the last 7 days of July to the first 15 days of August.

The back-to-school and Christmas season features are
fairly positively correlated with the target based on
correlation coefficients, and may help the models capture
the seasonal spikes.

3.4.3 Price Change Features

The actual price amount is unlikely to matter for this

product (it may matter when dealing with multiple different
products). What is probably more useful from the
base_price feature are the price increases and the degree
to which they increase. In addition, price increases could
possibly have delayed effects on the target (maybe a .
Therefore, I added price change features based on the ratio
of current and a past date's price. The features
price_change_i use the price from i days before. In other
words, these features represent the multiplicative increase
in price for each day relative to a prior point in time. I added
features for 1, 2, 3, 4, 6, and 9 months prior as well as 1
year prior.

The price increases are initially slightly negatively
correlated before becoming slightly positively correlated
after 4+ months, with a 0.073 correlation for 1 year. These
correlations may again be influenced to some extent by
correlations with other features such as month, week, and
year.

3.4.4 Lag and Rolling Window Features

LightGBM, unlike the other mentioned methods, does not

inherently handle sequential or seasonal data. Lag features
are values from past “lags” (in this case, past days), while
rolling window features are aggregated values (i.e. mean,
standard deviation, max, min, etc.) of a window of past
days. For example, a rolling mean of lag 7 and window 3
would be the average of the values from 7, 8, and 9 days
prior. The previous price change features are based on
lagged values of base_price.

It is important not to include lags shorter than the horizon
(in this case, the number of days to forecast into the future).
For this project, we are aiming to predict sales up to 28

days into the future i.e. a horizon of 28. Lag and rolling
window features are based on past target values. If we use
a lag less than 28, such as a lag of 7, the 7-lag values
would be unknown starting from the 8th day (we can’t use
tomorrow’s true value as a feature for 8 days into the future
since tomorrow’s sale count hasn’t been observed yet).
Therefore, lagged features need to be shifted back at least
28 days.

I just added a number of features of different
combinations of lags and windows. As these features rely
on past data, the earlier dates in the dataset will have null
values for these features. I used lags of up to one year, so I
dropped the 2018 data from the dataset.

Since LightGBM is generally robust to multicollinearity
and implicitly does feature selection to some extent, I fit a
LightGBM model with all 108 features, then trimmed the
number of features down based on SHAP values to reduce
overfitting.

To avoid multicollinearity with SARIMAX, we would want
to avoid choosing exogenous regressors that are correlated
with other regressors. SARIMAX can only handle one
seasonal period at a time (e.g. weekly or yearly). It also has
difficulty with longer seasonal periods, so it would probably
be better to use 7-day seasonal periods and use regressors
to handle the yearly seasonality. Of the lag and rolling
window features, I only include lag_363_mean_7 (mean of
values from 363-365 days prior) as an regressor as it has
the highest correlation (0.34) with the target of these
features and can give the model information that it
otherwise wouldn’t with weekly periods.

3.5 Methods

I will build models using Holt-Winters, SARIMAX,

LightGBM, and Prophet, as well as using an ensemble of
the average of their predictions.

The Holt-Winters method, also known as triple
exponential smoothing, applies exponential smoothing three
times and breaks the time series down into three
components: level, trend, and seasonality. It works well on
data with clear trends and seasonality and is quite efficient
in terms of speed, but may be overly-simple as it assumes
linear trends and seasonality and does not support multiple
seasonalities or external regressors, all of which may raise
issues with our data.
ARIMA (Autoregressive Integrated Moving Average)

models the time series as a linear combination of its past
values, past forecast errors, and differenced values.
SARIMAX (Seasonal ARIMA with Exogenous Regressors)
is an extension of ARIMA (which in turn is a generalization
of ARMA) that adds support for seasonality and exogenous
regressors. Like Holt-Winters, it still assumes linearity and

8

one seasonal period, but the latter issue could be
addressed to some extent with regressors. The larger
downside is that it can be computationally expensive,
making it time-consuming to tune.
LightGBM (Light Gradient-Boosting Machine) is a

tree-based machine learning algorithm. It can handle
nonlinearities and multiple seasonalities (via feature
engineering, and is also relatively fast. But because it is not
a time series model in itself, it requires extensive feature
engineering, cannot extrapolate trends, and accuracy of
forecasts can degrade quickly over long horizons.
Prophet is Meta’s open-source forecasting method that is

based on an additive model that, according to Meta, fits
non-linear trends with multiple seasonalities as well as
holiday effects [8]. As such, they can handle the issues
previously mentioned with the first two methods. It can also
run efficiently especially for small to medium-sized datasets,
and has a relatively simple API that makes it easy to use.

While offering more flexibility compared to Holt-Winters
and SARIMAX and is probably the best of the four methods
for long-term forecasting, Prophet still has its limitations. For
instance, it would be more accurate to say that it models
semi-nonlinear trends through piecewise linear or logistic
functions, which still involves some rigidity. However, the
STL decomposition (Fig. 4.2) does seem to suggest that
this may not be an issue. Also, it does not model
autocorrelation unlike SARIMAX (inherently included),
LightGBM (through lag features), and to some extent
Holt-Winters (implicitly through smoothed past values). In
other words, while it models trend, seasonality, and
specified holiday effects, it does not assume dependencies
with past values (e.g. today’s value depends on yesterday’s
value). One workaround is to add lag features, but this may
lead to overfitting with how the model is implemented so I
will only add holiday effects for the Prophet model.

I will also ensemble the models using the average of their
forecasts to see if it improves performance. There are other
options of ensembling such as taking a weighted mean
based on metrics or tuning the weights, but for the sake of
time I will just use the simple average.

4 Evaluation

4.1 Evaluation Metrics

To evaluate the predictive models, I will use four metrics:

RMSE, RMSLE, MAE, and SMAPE.

●​ 𝑅𝑀𝑆𝐸 = 1
𝑛

𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖()2

●​ 𝑅𝑀𝑆𝐿𝐸 = 1
𝑛

𝑖=1

𝑛

∑ 𝑙𝑜𝑔(𝑦
𝑖

+ 1) − 𝑙𝑜𝑔(𝑦
𝑖

+ 1)()2

●​ 𝑀𝐴𝐸 = 1
𝑛

𝑖=1

𝑛

∑ 𝑦
𝑖

− 𝑦
𝑖

|||
|||

●​ 𝑆𝑀𝐴𝑃𝐸 = 1
𝑛

𝑖=1

𝑛

∑
𝑦

𝑖
 − 𝑦

𝑖
|||

|||

𝑦
𝑖| | + 𝑦

𝑖
|||

|||()2
/ 2

Mean Absolute Error (MAE) is the average distance

between predicted and actual values, and is easy to
interpret. Root Mean Squared Error (RMSE) is similar but
penalizes larger differences. I will minimize RMSE (or
maximize the negative MSE when using sklearn’s
RandomizedSearchCV) during hyperparameter tuning.
Root Mean Squared Logarithmic Error (RMSLE)

measures relative error as a ratio and is good for skewed
data, as with this right-skewed data. For instance, predicting
10 for 5 and 100 for 50 are both off by 2 times the actual
value (technically, they’re treated slightly differently since
each value is increased by 1 to handle zero values).
RMSLE also penalizes underestimations more than
overestimations, which is often useful in various business
contexts. In the context of product demand, overestimations
can result in a surplus of inventory from over-ordering while
underestimations can lead to loss of potential sales. If
surpluses are less of a risk, we would care more about
underestimating demand. In contrast, RMSE treats the size
of over- and underestimates the same and punishes larger
mistakes, the latter of which can penalize models for bad
predictions of outliers which can skew results.
Symmetric Mean Absolute Percentage Error (SMAPE)

measures the percentage difference between actual and
predicted values, and like RMSLE, is less sensitive to
outliers and handles zeroes unlike MAPE (division by 0
occurs only when both actual and predicted values are 0,
but can be handled by return 0 or ignoring these points).
Compared to RMSLE, SMAPE reports error as a
percentage rather than ratio which may be more intuitive,
and it penalizes over- and underestimates equally. It is also
scale-independent, so it can be used to compare with other
time series data of different scales such as other products
or the same product’s sales at another store. However,
while it is more forgiving to mispredictions of large outliers,
SMAPE is much more sensitive to small values, especially
near 0. For example, if the actual value is 0 and the
predicted value is 1 (or vice versa), it would have an error of
200% which may lead to a misleading SMAPE score. At a
daily level, it is not rare to sell none of a specific product on
some days so we may see some inflated values for
SMAPE. At a less granular level such as weekly, no sales

9

for one period of time may be unlikely (depending on the
product) which would make SMAPE more of a meaningful
metric.

Different models may do better than others under different
contexts, and evaluating them with these four metrics can
give us insight into how well they perform under different
situations.

4.2 Experimental Setup

I split the data into a training set to fit the models and a

test set for evaluation. Because it is a time series, I split the
data chronologically rather than randomly since the training
set should contain data for dates before those in the test
set. The forecast horizon is 28 days so in practice, the
model would need to be evaluated on at most 28 days after
the last day in the training set. It would also be ideal to
evaluate the models on at least one year of test data to see
how they perform across different periods of the year.

I will use an expanding window cross-validation approach
for evaluation as well as for hyperparameter tuning. I took
the following steps:

1.​Use the last 364 days (roughly 1 year) to create 13
folds of 28 (forecast horizon size) consecutive days
each.

2.​Fit the model with the initial training set and evaluate on
the first fold for the dates that chronologically occur
directly after the last day in the training set, and record
the metrics.

3.​Expand the training set window by adding the previous
test fold to the training set, and repeat for each
consecutive fold.

4.​Take the average of each evaluation metric to measure
the average performance of the model across the 13
folds.

Forecasting accuracy decreases for days further in the
future, so simply evaluating using one-year’s worth of data
would not be reflective of the actual performance of the
model. Assuming the model would be refitted on updated
training data for each forecast, expanding window
cross-validation would effectively simulate the model’s
real-world application.

The test set includes the last 364 days in the dataset from
June 3, 2024 to June 1, 2025 (which is split into 13 folds for
evaluation). In addition, the 364 days from June 5, 2023 to
June 2, 2024 are used for cross-validation during
hyperparameter tuning.

One final thing to mention is that predictions for closed
days (e.g. Christmas) can be ignored because they will
always have zero counts, so I will manually set their
predictions to 0.

4.3 Results

As a baseline, I made a naïve forecast by simply taking

the average of the training set values and using it as the
predicted value for all forecasts on the test, resulting in
RMSE = 4.3680, MAE = 3.3521, RMSLE = 0.8260, and
SMAPE = 67.9012 (compare with Fig. 12.1).

4.3.1 Holt-Winters

Since Holt-Winters only handles one type of seasonality

at a time, I fit models for both seasonal_periods = 7 (SP=7)
and 364 (SP=364). 364 periods performs better than 365
since it lines up with the weekly seasonality due to being
divisible by 7 and isn’t sensitive to leap years.

Fig. 8​ Forecasts on the 13 test-folds for Holt-Winters with 7 (green) and
364 (red) seasonal_periods and an ensemble average (blue), with associated

average RMSEs across folds included in the legend.

The SP=7 model has a lower RMSE of 3.8594 compared

to the SP=364 model’s RMSE of 4.0378, both of which are
an improvement to the naïve forecast RMSE of 4.3580.
However, the SP=364 model has a lower RMSE of 3.5439
for fitted values (prediction on training set) compared to the
SP=7 model’s fitted RMSE of 4.1436. SP=364 is more
flexible in capturing spikes in the data but overfits on the
training data, while SP=7 makes smaller errors but has less
variability in values since Holt-Winters assumes constant
seasonal patterns.

An ensemble model that averages the predictions of the
SP=7 and SP=364 models results in a more balanced
forecast with a lower RMSE of 3.7633, as it keeps some of
the flexibility of the SP=364 predictions while being kept in
check by the SP=7 predictions (Fig. 9).

4.3.2 SARIMAX

For SARIMAX, I fit one model without exogenous

regressors (SARIMA) and another with regressors. Both
used 7 periods for seasonality. I chose three regressors for
the SARIMAX model: back_to_school, 6d_to_christmas,
and lag_363_mean_3 (the mean target value for 363-365
days prior). To capture yearly seasonality, I chose these
three regressors that had relatively high correlation

10

coefficients with the target. I limited it to these three to avoid
multicollinearity. While it is possible to try different
combinations of regressors, SARIMAX takes substantially
longer to fit which makes tuning very time-consuming.

Fig. 9​ Forecasts on the 13 test-folds for SARIMA (red) and SARIMAX

(blue).

SARIMA suffers the similar issues to Holt-Winters with 7

seasonal periods, and fails to capture yearly seasonal
spikes. External regressors add extra context to the model
for certain seasonal periods as well as the previous year’s
values, leading to an improved SARIMAX model with RMSE
of 3.7024, slightly beating out the Holt-Winters ensemble.
While the predictions still have less variation than the
Holt-Winters ensemble, it can also be said that the
predictions are more stable and less prone to many large
errors.

4.3.3 LightGBM

I first fit a LightGBM model using all 108 features,

resulting in an RMSE of 3.7024, basically exactly the same
as SARIMAX. There are some differences, as LightGBM
does significantly better on the fitted values which suggests
overfitting for LightGBM but possibly less underfitting
compared to SARIMAX, while SARIMAX does slightly better
in the other metrics like MAE and SMAPE.

While feature selection isn’t as important for tree-based
methods, which choose the optimal feature at each fold,
dimensionality reduction can still result in performance
improvements by potentially reducing overfitting and
increasing speeds.

LightGBM does provide feature importances to measure
the importance of each feature to the model. By default,
these values are based on the number of times each
feature was used to split the data but this can be misleading
for features that might be important for a minority of
instances (e.g. days leading up to Christmas). Instead, I
perform feature selection by computing SHAP values as a
measure of feature importance and removing features with
SHAP values under a certain threshold.

Fig. 10​ Mean absolute SHAP values over 13 validation-folds for

LightGBM with 108 features.

By looking at the SHAP values, we can get a sense of

which features are influential for the model, and which are
unimportant. Interestingly, all of the price change features
have very low values suggesting that price changes barely if
at all affect the number of sales for this particular product.
Meanwhile, as expected there are a number of seasonal
features at the upper end of the spectrum including
day_of_week, back_to_school, and 6d_to_christmas, along
with a number of lag and rolling window features.

I tuned the threshold for removing features by fitting and
evaluating models through cross-validation, which resulted
in an optimal threshold of 0.7. This resulted in a large
reduction from 108 to just 14 features (the leftmost 14
features in Fig. 10). In addition to only requiring a fraction of
the original feature set, this reduction resulted in a very
slight improvement of RMSE down to 3.7016, but more
importantly reducing the MAE, RMSLE, and sMAPE scores
below those of the SARIMAX models. While the actual
differences in accuracy might be negligible between the
SARIMAX and reduced LightGBM models, the LightGBM
model runs significantly faster (discussed in Section 5).

4.3.4 Prophet

The Prophet model had improved scores for each of the

four metrics, including an RMSE of 3.6152. Note that this
was with holiday effects but without regressors including no
lag features. Prophet also has a function to easily plot the
trend, holiday, as well as the weekly and yearly seasonal
components (Fig. 11).

The trend, despite being piecewise linear, is similar to that
of the STL decomposition (Fig. 4.2). We also see strong
holiday effects for back-to-school and the leadup to
Christmas, and possibly important effects for other holidays.
We also get an expected pattern for weekly seasonality, but
we also get an interesting smoothed curve for yearly
seasonality. There are peaks around August and December,
possibly effects that weren’t fully captured by the holiday
component. However, we also seem to see patterns for
other months, including smaller peaks around March-April
and October-November (as was somewhat observed in Fig.
4.2) and dips around February and May.

11

Fig. 11​ Prophet trend, holidays, weekly, and yearly component plots

Despite not utilizing an autoregressive approach, Prophet

is able to model trends and seasonalities in a flexible
manner allowing it to discover patterns that weren’t as
easily identified through other methods, likely being a factor
to its better performance.

4.3.5 Ensemble Average and Model Comparisons

An ensemble model was built by simply taking the

average of the best models for each of the four methods,
and resulted in lower RMSE, MAE, and SMAPE, and only
being slightly beaten out by Prophet in RMSLE.

Fig. 12.1​ RMSE, MAE, RMSLE, and SMAPE averages across 13 test-folds

for the Holt-Winters (ensemble average of 7 and 364 seasonal periods),
SARIMAX with three exogenous regressors, LightGBM with 14 features,

Prophet with holiday effects (no regressors), and an ensemble of the average
of the four models’ predictions.

When comparing the average of metrics across folds (Fig.

13.1), Prophet seems to be the best single method for
RMSE, MAE, and RMSLE, while LightGBM does somewhat
better in SMAPE. Holt-Winters, despite having lower RMSE,
MAE, and SMAPE, has a comparable RMSLE to Prophet.

In terms of speed, the Holt-Winter model took
approximately 0.5 seconds and 1.24 seconds with
seasonal_periods = 7 and 364 respectively. A tuned
Prophet model took 0.38 seconds, although a Prophet
model with default parameters took significantly longer at
4.0 seconds. LightGBM with 14 features took just 0.04
seconds to fit, but even with 108 features it required 0.34
seconds which is still faster than the other methods.
However, it does take a considerable amount of time to
compute the SHAP values of the 108 features. The runtime
for single fit of the SARIMAX model was 25.75 (14.04

seconds without regressors), making it by far the most
computationally expensive of these approaches.

Fig. 12.2​ RMSE of each test-fold for each model.

When comparing performance for each individual fold,

there is no clear best model across all folds. It is possible
that each model performs better under certain
circumstances. For instance, despite having slightly worse
average metrics compared to LightGBM and running much
slower, it has the lowest RMSE during the fold containing
the back-to-school dates. Holt-Winter, despite having the
worst average RMSE, actually has the best RMSE for
certain folds although struggles for other folds. These folds
seem to correspond with yearly seasonality, suggesting that
it performs worse with higher seasonal effects but
conversely has more potential during stable seasons.

The ensemble is able to balance out the strengths and
weaknesses of each model. While it might not always result
in the best predictions for specific folds compared to
individual models, it is able to make relatively good
predictions across the folds.

5 Discussion

One major change that I made to this project was to

change the problem itself and nearly start over from scratch.
I originally tried to forecast customer traffic at a sub-hourly
level, but it was a complex problem. Due to higher variance
at finer granularity, Random Forest, LightGBM, and even
Prophet models were making predictions that were basically
predicting a smooth curve. This may be fine for predicting
averages but the models did not even attempt to capture
spikes and dips in the data, defeating the purpose of the
project.

Changing the scope of the problem to a daily level gave
more meaningful results, but still suffers from this issue. The
reality is that even with daily rather than sub-hourly
forecasts, the prediction errors are still too high. Even with a
MAE of 2.87, most values are in the single digits (with a
median of 5) so an actual value of 5 can easily be
mispredicted as 2 or 8, which is reflected by the generally
high SMAPE scores. This is due to the high variability of
sales at a daily level. In practice, however, predicting daily
sales may be overkill. Often, it may suffice to forecast at

12

one- or even two-week intervals, which would also remove
the need to model weekly seasonality.

Fig. 13​ Average metrics across test-folds of weekly sums of forecasts

If we were to group the actual and predicted values by

week to predict weekly counts, we get results that may be
more applicable for a real-world situation (such as
restocking the product based on forecasted demand for the
following week). For instance, the ensemble predictions are
off by 8.15 on average at a 7-day level, compared to 2.87 at
a 1-day level. It’s also possible to get better weekly results
through other ensemble methods such as through stacking
by training another meta on the daily forecasted values.

Another challenge was dealing with unclear seasonal
trends. I was able to identify the back-to-school and
Christmas shopping seasons, but it was less clear as to
how many days to include for those seasons. In addition
there were other possible seasons with lower yet significant
seasonal effects that weren’t as easily identified. The
Prophet model may have done better since it was able to
automate this process to an extent. More experimentation
with feature engineering may be able to improve results.

In addition to ensembling methods, more extensive
feature engineering, and further hyperparameter tuning,
there are other approaches that could be taken. TBATs is a
statistical model that uses exponential smoothing like
Holt-Winters, but can also deal with multiple seasonalities.
In addition, like SARIMAX, incorporates ARMA
(AutoRegressive Moving Average) terms among other
extensions. As such, it can be better for handling complex
time series data. There are also deep learning methods
such as LSTMs (Long Short-Term Memory), CNNs
(Convolutional Neural Networks), as well as NeuralProphet
(an extension to Prophet utilizing neural networks) have
been shown to be viable especially for capture complexities
in data, although these models may not perform as well on
smaller datasets.

6 Conclusion

Generally, the Prophet model gave the most accurate

forecasts, while LightGBM was the second-best in terms of
accuracy but was substantially faster than the other
methods. SARIMAX was comparable to LightGBM in terms

of accuracy but much slower. Holt-Winters was fast but was
also the least accurate overall. At a per-fold level, however,
each model had the potential to do better (or worse) than
the others. As a result, the ensemble average returned
somewhat stabilized predictions leading to slightly higher
accuracy. Further feature engineering, exploring other
methods that can deal with complex data, and
experimentation with different ensembling methods may
lead to further performance improvements.

While the evaluations of the daily forecasts were
disappointing, results showed more promise for lower levels
of granularity which is sufficient for many real-world
applications. Furthermore, this project shows that even a
dataset much smaller and limited in information than those
of large corporations may still be viable for trend and
seasonality analysis as well as forecasting, especially when
domain knowledge is applied during feature engineering.
While daily forecasts on a single product’s sales may not be
practical especially for smaller datasets, the problem and
approaches used can be extended to lower granularities (as
just mentioned) or to different product levels (different
sizes/colors, between products, by categories, etc.). The
results of this project show that there is potential to create
business solutions that small local retailers may seek to
improve their operations.

REFERENCES

[1]​ Data Science Practice: Sales Forecasting. Corporación Favorita Grocery

Sales Forecasting Discussion, Kaggle, 2018.
https://www.kaggle.com/competitions/favorita-grocery-sales-forecasting/
discussion/47582

[2]​ Priyam Ganguly and Isha Mukherjee. 2024. Enhancing Retail Sales
Forecasting with Optimized Machine Learning Models. arXiv preprint
arXiv:2410.13773.

[3]​ Kaggle. 2020. M5 Forecasting - Accuracy. Retrieved June 14, 2025 from
https://www.kaggle.com/c/m5-forecasting-accuracy/overview

[4]​ Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos.
2022. The M5 accuracy competition: Results, findings, and conclusions.
Decision Support Systems 142 (2021), 113467.
DOI:https://doi.org/10.1016/j.dss.2020.113467

[5]​ M5 Competition. 2020. Code of Winning Methods: A1 - Preprocessing.
GitHub. Retrieved June 14, 2025 from
https://github.com/Mcompetitions/M5-methods/blob/master/Code%20of
%20Winning%20Methods/A1/3.%20code/1.%20preprocessing/1.%20pr
eprocessing.ipynb

[6]​ Statsmodels Developers. 2025. Statsmodels User Guide. Retrieved
June 14, 2025 from https://www.statsmodels.org/stable/user-guide.html

[7]​ Microsoft. 2025. LightGBM Documentation. Retrieved June 14, 2025
from https://lightgbm.readthedocs.io/en/stable/

[8]​ Facebook Research. 2025. Prophet: Forecasting at Scale. Retrieved
June 14, 2025 from https://facebook.github.io/prophet/

[9]​ Rob J Hyndman and George Athanasopoulos. 2018. Forecasting:
Principles and Practice (2nd ed.). OTexts. Retrieved June 14, 2025 from
https://otexts.com/fpp2/

